Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Stat Methods Med Res ; 31(9): 1675-1685, 2022 09.
Article in English | MEDLINE | ID: covidwho-2236610

ABSTRACT

Since the beginning of the COVID-19 pandemic, the reproduction number [Formula: see text] has become a popular epidemiological metric used to communicate the state of the epidemic. At its most basic, [Formula: see text] is defined as the average number of secondary infections caused by one primary infected individual. [Formula: see text] seems convenient, because the epidemic is expanding if [Formula: see text] and contracting if [Formula: see text]. The magnitude of [Formula: see text] indicates by how much transmission needs to be reduced to control the epidemic. Using [Formula: see text] in a naïve way can cause new problems. The reasons for this are threefold: (1) There is not just one definition of [Formula: see text] but many, and the precise definition of [Formula: see text] affects both its estimated value and how it should be interpreted. (2) Even with a particular clearly defined [Formula: see text], there may be different statistical methods used to estimate its value, and the choice of method will affect the estimate. (3) The availability and type of data used to estimate [Formula: see text] vary, and it is not always clear what data should be included in the estimation. In this review, we discuss when [Formula: see text] is useful, when it may be of use but needs to be interpreted with care, and when it may be an inappropriate indicator of the progress of the epidemic. We also argue that careful definition of [Formula: see text], and the data and methods used to estimate it, can make [Formula: see text] a more useful metric for future management of the epidemic.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , Forecasting , Humans , Pandemics/prevention & control , Reproduction
2.
Epidemics ; 39: 100588, 2022 06.
Article in English | MEDLINE | ID: covidwho-1914344

ABSTRACT

New disease challenges, societal demands and better or novel types of data, drive innovations in the structure, formulation and analysis of epidemic models. Innovations in modelling can lead to new insights into epidemic processes and better use of available data, yielding improved disease control and stimulating collection of better data and new data types. Here we identify key challenges for the structure, formulation, analysis and use of mathematical models of pathogen transmission relevant to current and future pandemics.


Subject(s)
Models, Theoretical , Pandemics , Pandemics/prevention & control
3.
R Soc Open Sci ; 8(7): 210386, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1343741

ABSTRACT

The COVID-19 pandemic has hit different regions differently. The current disease-induced immunity level î in a region approximately equals the cumulative fraction infected, which primarily depends on two factors: (i) the initial potential for COVID-19 in the region (R 0), and (ii) the preventive measures put in place. Using a mathematical model including heterogeneities owing to age, social activity and susceptibility, and allowing for time-varying preventive measures, the risk for a new epidemic wave and its doubling time are investigated. Focus lies on quantifying the minimal overall effect of preventive measures p Min needed to prevent a future outbreak. It is shown that î plays a more influential roll than when immunity is obtained from vaccination. Secondly, by comparing regions with different R 0 and î it is shown that regions with lower R 0 and low î may need higher preventive measures (p Min) compared with regions having higher R 0 but also higher î, even when such immunity levels are far from herd immunity. Our results are illustrated on different regions but these comparisons contain lots of uncertainty due to simplistic model assumptions and insufficient data fitting, and should accordingly be interpreted with caution.

4.
Proc Biol Sci ; 287(1932): 20201405, 2020 08 12.
Article in English | MEDLINE | ID: covidwho-711780

ABSTRACT

Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Immunity, Herd , Models, Theoretical , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , COVID-19 , Child , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Disease Eradication , Family Characteristics , Humans , Pandemics/prevention & control , Pneumonia, Viral/immunology , Pneumonia, Viral/prevention & control , Schools , Seroepidemiologic Studies
5.
Science ; 369(6505): 846-849, 2020 08 14.
Article in English | MEDLINE | ID: covidwho-612831

ABSTRACT

Despite various levels of preventive measures, in 2020, many countries have suffered severely from the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Using a model, we show that population heterogeneity can affect disease-induced immunity considerably because the proportion of infected individuals in groups with the highest contact rates is greater than that in groups with low contact rates. We estimate that if R 0 = 2.5 in an age-structured community with mixing rates fitted to social activity, then the disease-induced herd immunity level can be ~43%, which is substantially less than the classical herd immunity level of 60% obtained through homogeneous immunization of the population. Our estimates should be interpreted as an illustration of how population heterogeneity affects herd immunity rather than as an exact value or even a best estimate.


Subject(s)
Betacoronavirus , Coronavirus Infections/immunology , Immunity, Herd , Models, Theoretical , Pneumonia, Viral/immunology , Age Factors , Basic Reproduction Number , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Demography , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Social Behavior , Social Participation
SELECTION OF CITATIONS
SEARCH DETAIL